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Abstract. Bisection is one of the most common methods used to compute the eigenvalues of
symmetric tridiagonal matrices. Bisection relies on the Sturm count : for a given shift σ, the number
of negative pivots in the factorization T − σI = LDLT equals the number of eigenvalues of T that
are smaller than σ. In IEEE-754 arithmetic, the value ∞ permits the computation to continue past
a zero pivot, producing a correct Sturm count when T is unreduced. Demmel and Li showed in
the 90s that using ∞ rather than testing for zero pivots within the loop could improve performance
significantly on certain architectures.

When eigenvalues are to be computed to high relative accuracy, it is often preferable to work with
LDLT factorizations instead of the original tridiagonal T . One important example is the MRRR
algorithm. When bisection is applied to the factored matrix, the Sturm count is computed from
LDLT which makes differential stationary and progressive qds algorithms the methods of choice.

While it seems trivial to replace T by LDLT , in reality these algorithms are more complicated:
in IEEE-754 arithmetic, a zero pivot produces an overflow followed by an invalid exception (NaN)
that renders the Sturm count incorrect.

We present alternative, safe formulations that are guaranteed to produce the correct result.

Benchmarking these algorithms on a variety of platforms shows that the original formulation
without tests is always faster provided no exception occurs. The transforms see speed-ups of up to
2.6× over the careful formulations.

Tests on industrial matrices show that encountering exceptions in practice is rare. This leads to
the following design: First, compute the Sturm count by the fast but unsafe algorithm. Then, if an
exception occurred, recompute the count by a safe, slower alternative.

The new Sturm count algorithms improve the speed of bisection by up to 2× on our test matrices.
Furthermore, unlike the traditional tiny-pivot substitution, proper use of IEEE-754 features provides
a careful formulation that imposes no input range restrictions.
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1. Introduction. In the early 90’s, Demmel and Li demonstrated that handling
exceptions carefully can improve the performance of certain numerical algorithms [8].
One such algorithm is bisection using Sturm counts to compute the eigenvalues of
a symmetric tridiagonal matrix T . A Sturm count finds the number of eigenvalues
less than a given shift parameter σ. Sturm count calculations can encounter a zero
pivot while factoring T − σI = LDLT . A conventional bisection implementation like
LAPACK’s dstebz substitutes a small number for zero and continues the compu-
tation [3]. This procedure has two disadvantages. Testing imposes a performance
penalty, and ensuring correctness requires a range restriction on the input data.

IEEE-754 arithmetic [4, 21] provides the special value ∞ (‘Infinity’) to continue
past the exceptions of overflow and division by zero. This quantity propagates like
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any other floating point value, ideally at full speed. In [8], this capability of IEEE-
754 arithmetic allows a faster Sturm count and hence a faster implementation of
tridiagonal bisection. The faster algorithm also avoids the input restrictions, removing
both disadvantages.

Since [8], there has been significant progress in algorithms for the symmetric
eigenvalue problem. In particular, LAPACK now includes dstegr, an implementa-
tion of the MRRR algorithm [23, 24, 25, 26, 9]. Two key concepts of MRRR are its
use of shifted LDLT factorizations instead of the original tridiagonal matrix T , and
the differential stationary and progressive qds algorithms that transform one shifted
factorization into another. The MRRR algorithm applies these transformations to
produce a suitable Relatively Robust Representation (RRR) for each eigenvalue. This
RRR is an appropriately shifted LDLT factorization from which the MRRR algorithm
computes a corresponding eigenvector with guaranteed small residual and numerical
orthogonality. In this process, the algorithm also refines some eigenvalues by bisection,
again using the differential qds algorithms.

This paper focuses on using the qds algorithms in bisection. Originally, the dif-
ferential qd (dqd) algorithm was proposed by Rutishauser [28, 29]. Parlett and Fer-
nando [14, 15, 22] discovered the shifted variant (dqds) as an improvement to Demmel
and Kahan’s zero shift QR [7] for computing singular values of a bidiagonal matrix
to high relative accuracy, see also [27].

Applying bisection to the factored matrix LDLT using the stationary and pro-
gressive differential qds transformations is more complicated than traditional bisection
directly applied to the tridiagonal T . A qds implementation in IEEE-754 arithmetic
can encounter not only ∞ but also an invalid operation ∞/∞ (producing NaN, or
‘Not A Number’) that renders the Sturm count invalid. Demmel and Li [8] suggest a
paradigm for algorithms where exceptions may invalidate the results of calculations
that otherwise appear simple:

(i) Use a fast (but possibly incorrect) algorithm to compute a result.
(ii) Assess the correctness of the computed result.
(iii) If the answer is not correct, use a slower and more careful algorithm to

recompute the result.
This paper applies this exception-handling paradigm to qds transformations and

quantifies the resulting performance on today’s computer architectures. This allows us
to select the best performing and most robust implementation of qds transformations
for use in bisection and the MRRR algorithm.

The paper is organized as follows. Section 2 gives an overview of the various
formulations of Sturm counts via qds transformations. We analyze three always cor-
rect alternatives to the basic version. One of the alternative formulations computes a
correct Sturm count without any additional input range restrictions.

Section 3 is the heart of this paper. We benchmark our algorithms for input data
that results in both exceptional and unexceptional execution to quantify the benefits
of using IEEE-754 features and the penalties for encountering exceptions. As long as
no exception occurs, the basic version is always faster. Overall, the careful variants’
times are around 1.12× the time of the the basic version. We refer to this as a speed-
up of 1.12 when comparing the faster basic version with the slower careful variants.
When an exception occurs, the combined plain/careful computation times are about
1.63× that of the careful loop alone, which we call a slow-down of 1.63. There is one
remarkable exception, the Pentium 4 Xeon, whose performance drops by factors of
18-60× in the exceptional case.
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Section 4 compares these formulations when applied within bisection on real world
test examples. The median speed-up of the fast algorithm when running bisection to
determine the eigenvalues fairly accurately is moderate, around 1.08. The Cray X1
greatly benefits from moving exceptional tests out of the inner loop, seeing speed-ups
from 1.2 to almost 2.

The potential for huge slow-downs on aberrant architectures implies that our
paradigm may not be suitable for portable code. However, Section 5 describes a
technique to limit the penalty on almost all cases: blocking. The Sturm count com-
putation can be divided into blocks, and the NaN test is performed on each block.
Thus, if a NaN occurs, only the computation of the previous block need be repeated.

The Appendix A gives a short overview of important implementation details in
our algorithms.

2. Sturm counts with and without IEEE-754 arithmetic. Bisection is one
of the most popular methods for computing the eigenvalues of a symmetric tridiag-
onal matrix. It can be used to find k selected eigenvalues with O(kn) work given a
tridiagonal matrix of dimension n. Furthermore, it is easily parallelizable.

Bisection is based on Sturm counts. This section presents various methods for
computing Sturm counts. We require that the input matrix is unreduced; that is,
no entry on the super- or subdiagonal is zero. This implies that the eigenvalues are
simple. Additionally, we assume no input is NaN or ±∞.

2.1. Sturm counts for a tridiagonal matrix. Sylvester’s Law of Inertia states
that the (shifted) symmetric tridiagonal matrix T − σI = LDLT , with L being unit-
bidiagonal and D being diagonal, has the same number of positive, negative, and zero
eigenvalues as D, see for example [16] .

This result can be used to find, by suitable variation of the shifts, small enclosing
intervals for each eigenvalue of T . Starting with an initial interval [VL, VU ] containing
the eigenvalue, we compute the number of negative pivots at the midpoint (VL+VU )/2.
If this number is smaller than the index of the wanted eigenvalue, the eigenvalue lies
in the right half of the interval, otherwise in the left half. This bisection process can
be repeated until an interval of suitably small size is found. Its implementation in
finite precision arithmetic is correct provided the Sturm count is monotonic with σ,
see [19, 6].

The well known recurrence for the pivots in D is given by

d(i) = (T (i, i)− σ)− T (i, i + 1)2

d(i− 1)
. (2.1)

In finite precision arithmetic, the pivot d(i− 1) may be tiny or exactly zero. In this
case, the succeeding pivot d(i) overflows (provided that T (i, i + 1) 6= 0).

A possible cure to this situation was first developed in [19]. At the beginning of the
algorithm, a minimum pivot threshold pivmin is computed. It represents the smallest
divisor so that T (i, i + 1)2/pivmin does not overflow. Then, whenever |d(i− 1)| <
pivmin, the algorithm replaces d(i− 1) by pivmin. (The convention in LAPACK’s
dstebz is actually to replace the pivot by negative pivmin.) This substitution limits
the input range. To prevent overflows, the inputs must satisfy |T (i, j)| ≤ Ω1/2η1/4,
where Ω is the arithmetic’s overflow threshold and η is the smallest positive normalized
number.

IEEE-754 arithmetic allows us to avoid the pivmin threshold [8]. With d(i− 1) =
0, the next pivot becomes −∞, and the computation continues normally afterwards
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with d(i + 1) = T (i + 1, i + 1) − σ. In [8], the authors report a speed-up of 1.2 to
1.3 of Sturm counts using the IEEE-754 version over the version based on the pivmin
threshold. The impact on bisection is reported to be a speed-up of 1.14 to 1.24. Also,
the IEEE-754 version does not impose any range restrictions.

2.2. Sturm counts for a tridiagonal matrix in factored form LDLT .
Instead of applying Sylvester’s Law of Inertia to a tridiagonal matrix T , it also can be
applied to its LDLT factorization. This idea leads to differential qds transformations
that are introduced in the following. They are of great importance to the MRRR
algorithm [23, 24, 25, 26, 9] that requires the reliable computation of Sturm counts
from shifted LDLT factorizations instead of the original tridiagonal matrix.

In order to compute Sturm counts, MRRR uses two principal algorithms, the
differential stationary qds factorization LDLT − σI = L+D+LT

+ and the differential
progressive qds factorization LDLT − σI = U−D−UT

− . These are variants of an
algorithm originally proposed by Rutishauser [28, 29] and are stable in a mixed sense,
see [26].

While a Sturm count on T does not look very different from one on LDLT , there
are subtle and important differences between the two approaches that are summarized
in the following:

tridiagonal T Factored T = LDLT

Sturm sequence algorithm T − σI = LDLT differential qds algorithms
Possible exceptional values ∞ ∞, NaN
Is the final Sturm count valid? Always If NaN has not occurred

Algorithm 2.1 presents both the stationary (a) and progressive (b) algorithms.
The variable negcount holds the Sturm count. Note the following:

(i) Both algorithms use the quantities d(i) and l(i)2d(i). If the Sturm count is
repeated several times as in bisection, precomputing lld(i) ≡ l(i)2d(i) is more efficient
than repeatedly computing l(i)2d(i). We use lld(i) through the rest of the paper.

(ii) For the purposes of the Sturm sequence, it is not necessary to store the
pivots d+(i) and d−(i).

(iii) The division in both algorithms is probably the most costly operation. We
place the sign tests after the division to encourage optimizations that overlap the two
operations.

Sturm counts on the factored matrix LDLT via differential stationary or pro-
gressive qds transforms can produce a NaN during the computation. In the case of
differential stationary qds, if d+(i − 1) = 0, then |d+(i)| = ∞ and d+(i + 1) = NaN,
see also Table 2.1(a). For the differential progressive qds, if d−(i + 1) = 0, then
|d−(i)| = ∞ and d−(i− 1) = NaN, see also Table 2.1(b).

i− 1 i i + 1

t −d(i− 1) ±∞ NaN
d+ 0 ±∞ NaN

(a) Stationary qds

i− 1 i i + 1

d− 0 ±∞ NaN
p ±∞ NaN NaN

(b) Progressive qds

Table 2.1: Variable values after a zero pivot is encountered in step i − 1 of the
stationary and the progressive variant of Algorithm 2.1.
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Algorithm 2.1: The differential stationary and progressive qds algorithms compute
L+D+LT

+(stationary) = U−D−UT
−(progressive) = LDLT − σI and count the number

of negative pivots. The diagonal elements of D are d(1), . . . , d(n) and the products
D(i, i)L(i, i+1)2 are lld(1), . . . , lld(n−1). (The off-diagonal entries of L are not used
explicitly, they only occur in the products D(i, i)L(i, i + 1)2.) The quantity negcount
denotes the number of eigenvalues of LDLT that are less than σ.

negcount = 0
t = −σ
for i = 1 : n− 1 do

d+(i) = d(i) + t

t =
(
t/d+(i)

)
∗ lld(i)− σ

Increase negcount if d+(i) < 0
end for
d+(n) = d(n) + t
Increase negcount if d+(n) < 0

(a) Stationary qds

negcount = 0
p = d(n)− σ
for i = n− 1 : 1 do

d−(i + 1) = lld(i) + p

p =
(
p/d−(i + 1)

)
∗ d(i)− σ

Increase negcount if d−(i+1) < 0
end for
d−(1) = p
Increase negcount if d−(1) < 0

(b) Progressive qds

If a NaN occurs, that NaN propagates through all subsequent computations. The
resulting Sturm count is incorrect in this case; the computation needs to be repeated
with a NaN-free variant of the respective algorithm. This is in contrast to a Sturm
sequences using T that is robust even when ∞ occurs.

2.3. NaN-free variants of differential qds transforms. There are differ-
ent possible approaches to avoid invalid operations in the differential stationary and
progressive qds algorithms. In this section, we discuss three such variants of Algo-
rithm 2.1 that are based on appropriate substitutions. A summary of the possible
exceptional values and range restrictions of the various alternative formulations is
given in Table 2.2. These are explained in the later sections.

Algorithm Exceptional values Range restrictions

2.2: pivmin none |T (i, j)| ≤ Ω1/2η1/4

2.3: ∞/∞⇒ 1 ±∞ none
2.4: ±∞⇒ ±Ω ±∞ |d(i)| < Ω ε

Table 2.2: Range restrictions and possible exceptional values for the alternative formu-
lations of the differential qds algorithms. The quantity Ω is the overflow threshold,
η is the smallest positive, normalized number, and ε denotes the smallest positive
number such that 1 + ε does not evaluate to 1.

2.3.1. Substitution of pivmin for tiny pivots. The first approach mimics the
tridiagonal Sturm count procedure presented in Section 2.1. Algorithm 2.2 replaces
tiny and zero pivots with a minimum threshold pivmin to prevent division by a zero
pivot. It entirely avoids exceptional values. The choice of pivmin is justified by [19]
and used in LAPACK. In our tests, we use pivmin = η ·maxi=1...n−1 T (i, i + 1)2. To
avoid overflows, the initial data must satisfy |T (i, j)| ≤ Ω1/2η1/4.
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Algorithm 2.2: Substituting pivmin for very small pivots.

negcount = 0
t = −σ
for i = 1 : n− 1 do

d+(i) = d(i) + t
if |d+(i)| < pivmin then

d+(i) = −pivmin
end if
t =

(
t/d+(i)

)
∗ lld(i)− σ

Increase negcount if d+(i) < 0
end for
d+(n) = d(n) + t
Increase negcount if d+(n) < 0

(a) Stationary qds

negcount = 0
p = d(n)− σ
for i = n− 1 : 1 do

d−(i + 1) = lld(i) + p
if |d−(i + 1)| < pivmin then

d−(i + 1) = −pivmin
end if
p =

(
p/d−(i + 1)

)
∗ d(i)− σ

Increase negcount if d−(i+1) < 0
end for
d−(1) = p
Increase negcount if d−(1) < 0

(b) Progressive qds

2.3.2. Substitution of ∞/∞ by 1. The second approach mimics the tridiag-
onal Sturm count by allowing ∞ but preventing the subsequent NaN. For the dif-
ferential stationary qds algorithm (Algorithm 2.1(a)), substituting of an alternate
value for ∞/∞ can avoid producing a NaN. Using L’Hospital’s limit formula, we find
lim

t→∞
t/d+(i) = lim

t→∞
t/(d(i)+t) = 1. The same argument holds for the quotient p/d−(i+1)

in the differential progressive qds algorithm (Algorithm 2.1(b)). The qds variants in
Algorithm 2.3 explicitly substitute 1 for ∞/∞. Note that the infinite t (or p) from a
tiny or zero pivot produces a pivot d+ (or d−) with the same sign, so the substitution
is always 1. This variant does not restrict the input range but does produce ±∞
values.

Algorithm 2.3: Substituting 1 for ∞/∞.

negcount = 0
t = −σ
for i = 1 : n− 1 do

d+(i) = d(i) + t
if |t| = ∞ and |d+(i)| = ∞ then

q = 1
else

q =
(
t/d+(i)

)

end if
t = q ∗ lld(i)− σ
Increase negcount if d+(i) < 0

end for
d+(n) = d(n) + t
Increase negcount if d+(n) < 0

(a) Stationary qds

negcount = 0
p = d(n)− σ
for i = n− 1 : 1 do

d−(i + 1) = lld(i) + p
if |p| = ∞ and |d−(i + 1)| = ∞
then

q = 1
else

q =
(
p/d−(i + 1)

)

end if
p = q ∗ d(i)− σ
Increase negcount if d−(i+1) < 0

end for
d−(1) = p
Increase negcount if d−(1) < 0

(b) Progressive qds
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2.3.3. Substitution of Overflow and Divide-by-Zero by ±Ω. Following a
suggestion of W. Kahan [19, 20], we present an alternative version which emulates
saturation arithmetic, an arithmetic where all overflows produce largest representable
number rather than ∞. Algorithm 2.4 replaces an infinite t or p with the correctly
signed largest representable number ±Ω. As long as the subsequent addition in the
next iteration does not overflow, division with the new pivot evaluates to 1 as in
Algorithm 2.3.

In true saturation arithmetic, all overflows would produce a correctly signed Ω as
a result. Because we emulate saturation arithmetic only when calculating t (or p), the
subsequent addition overflows and yields an incorrect pivot d+(i + 1) (or d−(i + 1))
if d(i + 1) ≥ Ωε. Thus we must restrict the input range slightly or add additional
tests to fully implement saturation arithmetic. We chose the former because practical
examples do not approach the input restriction d(i) < Ωε. This variant also produces
infinities as intermediate values. The function application sign(t) in Algorithm 2.4
returns 1 if t = +∞ and −1 if t = −∞.

Algorithm 2.4: Substituting the largest magnitude, finite number Ω for infinite quo-
tients (correctly signed).

negcount = 0
t = −σ
for i = 1 : n− 1 do

d+(i) = d(i) + t

t =
(
t/d+(i)

)
∗ lld(i)− σ

if |t| = ∞ then
t = sign(t) ∗ Ω

end if
Increase negcount if d+(i) < 0

end for
d+(n) = d(n) + t
Increase negcount if d+(n) < 0

(a) Stationary qds

negcount = 0
p = d(n)− σ
for i = n− 1 : 1 do

d−(i + 1) = lld(i) + p

p =
(
p/d−(i + 1)

)
∗ d(i)− σ

if |p| = ∞ then
p = sign(p) ∗ Ω

end if
Increase negcount if d−(i+1) < 0

end for
d−(1) = p
Increase negcount if d−(1) < 0

(b) Progressive qds

3. A benchmark of the various differential qds algorithms. We devise
two benchmarks to compare the various algorithms. For a given tridiagonal matrix
Vn in factored form LDLT , both benchmarks compute differential qds factorizations
of LDLT − σI. In the first case, we choose σ such that no zero pivot (and hence
no IEEE exception) occurs. In the second case, we choose σ to force an exception.
These benchmarks allow us to compare the performance of the algorithms in the
unexceptional case and to quantify the penalties when an IEEE exception occurs. For
given dimension n, the matrix Vn is a tridiagonal with all off-diagonal entries equal
to one; its diagonal consists of the vector 1 : n.

3.1. Benchmark details. The occurrence of NaN always follows a zero (or tiny)
pivot in LDLT − σI, see Table 2.1(a and b). Furthermore, a pivot can only be zero
when the shift is chosen as an eigenvalue of a leading submatrix in the stationary
case, and as an eigenvalue of a trailing submatrix in the progressive case.

For the first benchmark, the shift σ is chosen well outside the Gershgorin bounds.
This guarantees that no exceptional operation occurs.
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Architecture
Clock
(mhz)

OS Compiler Timer

Athlon-XP 1200 GNU/Linux gfortran (Debian 4.0.1-6)
-O3 -fno-trapping-math
-march=athlon-xp

gettimeofday

Itanium 2 1300 Linux Intel ifort 9.0 -O2 gettimeofday

Pentium 4 Xeon, SSE 3000 Linux Intel ifort 9.0 -O3 -xP gettimeofday

Pentium 4 Xeon, x87 3000 Linux Intel ifort 9.0 -O3 -xP -mp gettimeofday

MIPS R12000 600 IRIX SGI MIPS pro 7.3.1.3m -O2 ETIME

Power3 375 AIX IBM xlf90 v8r11 -O3 PAPI
UltraSparc 2i 650 Solaris SUN f90 forte 7.0 -O4 PAPI
Cray X1 800 UNICOS Cray ftn 5.4.0.4 -O2 cpu time

Opteron 2200 Linux Pathscale pathf90 2.1 -O3 cpu time

Table 3.1: Platforms and timers used for testing.

The second benchmark must induce an invalid operation. For the differential
stationary qds algorithms, we choose as the shift the first diagonal element d(1),
and a NaN occurs in step 2. For the differential progressive qds algorithm, setting
lld(n − 1) = − (d(n)− σ) forces the pivot d−(n) to zero for any shift σ. However,
in order to prevent the matrix from becoming reducible, we must choose σ 6= d(n).
A reducible matrix would produce NaNs even in the alternative formulations of the
progressive algorithm. The choice σ = d(n)/2.0, and lld(n−1) = −d(n)/2.0 produces
a NaN regardless of any compiler optimizations or rounding settings.

We run each benchmark in double precision for matrices of dimensions from 500
to 6 000 by steps of 500. Individual Sturm counts compute very quickly, so we time a
loop of 50 000 Sturm counts on the same data. Table 3.1 summarizes the architectures,
compilers, and timers used for our experiments.

All tested platforms support the default IEEE-754 execution mode, producing
and propagating ∞ and NaN without user-visible traps. We tested both the Pentium
4 Xeon’s 80-bit x87 floating-point unit and its 64-bit SSE3 floating-point unit. We
tested only the SSE2 unit on the Opteron. SSE2 and SSE3 floating-point units can
perform vector operations where each operand is a pair of double-precision values.
The Intel and Pathscale compilers did not vectorize the Sturm counting loops and
used only the first 64-bit entry in each vector register. The Athlon platform tested
supports only SSE1, so our tests use its x87 floating-point unit.

3.2. Benchmark results. Both benchmarks time the same Sturm count rou-
tines. Algorithms 2.2, 2.3, and 2.4 each are applied to T = LDLT for the two shifts
above. To test the paradigm of computing quickly and fixing failures, we time three
additional versions. Each runs the basic qds loop in Algorithm 2.1, tests the final
pivot for NaN, and re-computes with runs of Algorithms 2.2, 2.3, or 2.4 if the pivot
is NaN.

Figures 3.1, 3.2, and 3.3 present the timings for every algorithm and platform.
The times are normalized into CPU cycles per entry examined by

CPU cycles per entry =
total time

50 000 iterations · n entries
· clock speed in Hz (3.1)

given the CPU clock speeds in Table 3.1. Note that the figures have different horizontal
scales, and Figure 3.3 provides two views of the Pentium 4 Xeon’s performance when
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CPU cycles per entry

20 40 60 80

Basic qds then 2.4 : Exceptional
2.4: Subst. huge for Inf : Exceptional

Basic qds then 2.4 : Plain
2.4: Subst. huge for Inf : Plain

Basic qds then 2.3 : Exceptional
2.3: Subst. 1 for Inf/Inf : Exceptional

Basic qds then 2.3 : Plain
2.3: Subst. 1 for Inf/Inf : Plain

Basic qds then 2.2 : Exceptional
2.2: Subst. −pivmin for tiny : Exceptional

Basic qds then 2.2 : Plain
2.2: Subst. −pivmin for tiny : Plain

Itanium 2

20 40 60 80

Opteron

20 40 60 80

MIPS R12000
Basic qds then 2.4 : Exceptional

2.4: Subst. huge for Inf : Exceptional
Basic qds then 2.4 : Plain

2.4: Subst. huge for Inf : Plain
Basic qds then 2.3 : Exceptional

2.3: Subst. 1 for Inf/Inf : Exceptional
Basic qds then 2.3 : Plain

2.3: Subst. 1 for Inf/Inf : Plain
Basic qds then 2.2 : Exceptional

2.2: Subst. −pivmin for tiny : Exceptional
Basic qds then 2.2 : Plain

2.2: Subst. −pivmin for tiny : Plain

Power 3 UltraSparc 2i

stationary:Plain
progressive:Plain

stationary:Exceptional
progressive:Exceptional

Fig. 3.1: CPU cycles per entry for each qds algorithm. Vertical dashed lines show the
range of documented division latencies, if known.

using the x87 floating-point unit. The markers have different shapes to distinguish
both between progressive and stationary loops and also between plain and exceptional
execution. The dashed vertical lines denote the range of division latencies given
in platform documentation and tuning guides [1, 17, 18, 30, 32, 31, 2]. No such
information is available for the Cray X1.

3.3. Examining the benchmark results. On an unexceptional run, a basic
qds Sturm count achieves a speed-up of 1.12 over the careful algorithms of Section 2,
where speed-up is measured by the time of the careful algorithm divided by the time
of the basic qds algorithm on the same inputs. When exceptions occur, the median
slow-down of the combined basic/careful qds loops over the careful loop alone is 1.63.
We measure slow-down as the time of the combined loop divided by the time of the
careful loop on the same inputs. The only slow-downs over 2 occur for the x87 unit
on the Pentium 4 Xeon, which drastically penalizes exceptional values and suffers
slow-downs from 18.93 to 66.53. No one careful algorithm’s performance dominates
the others, but we recommend implementors use Algorithm 2.3 (∞/∞ ⇒ 1) because
it imposes no special range restrictions on the input data.

Unexceptional execution. Figure 3.4 compares the basic qds loops’ times to the
times of their careful counterparts when no exceptions occur. As expected, the basic
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CPU cycles per entry

50 100 150 200

Basic qds then 2.4 : Exceptional
2.4: Subst. huge for Inf : Exceptional

Basic qds then 2.4 : Plain
2.4: Subst. huge for Inf : Plain

Basic qds then 2.3 : Exceptional
2.3: Subst. 1 for Inf/Inf : Exceptional

Basic qds then 2.3 : Plain
2.3: Subst. 1 for Inf/Inf : Plain

Basic qds then 2.2 : Exceptional
2.2: Subst. −pivmin for tiny : Exceptional

Basic qds then 2.2 : Plain
2.2: Subst. −pivmin for tiny : Plain

P4 Xeon, SSE

50 100 150 200

P4 Xeon, x87
Basic qds then 2.4 : Exceptional

2.4: Subst. huge for Inf : Exceptional
Basic qds then 2.4 : Plain

2.4: Subst. huge for Inf : Plain
Basic qds then 2.3 : Exceptional

2.3: Subst. 1 for Inf/Inf : Exceptional
Basic qds then 2.3 : Plain

2.3: Subst. 1 for Inf/Inf : Plain
Basic qds then 2.2 : Exceptional

2.2: Subst. −pivmin for tiny : Exceptional
Basic qds then 2.2 : Plain

2.2: Subst. −pivmin for tiny : Plain

Athlon X1
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Fig. 3.2: CPU cycles per entry for each qds algorithm for platforms needing a wider
scale than Figure 3.1. Xeon values with the x87 unit are clipped to fit. Vertical
dashed lines show the range of documented division latencies, if known.
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Fig. 3.3: CPU cycles per entry for each qds algorithm on the Xeon with the x87 unit.
Vertical dashed lines show the range of documented division latencies, if known.
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Variant Min 1st Quartile Median Mean 3rd Quartile Max

All variants 0.775 1.063 1.118 1.235 1.355 2.638
2.2: pivmin 0.775 1.039 1.078 1.166 1.355 1.565
2.3: ∞/∞⇒ 1 1.016 1.091 1.129 1.218 1.206 1.805
2.4: ±∞⇒ ±Ω 0.984 1.055 1.133 1.321 1.580 2.638

Table 3.2: Ratio of careful loops’ times to corresponding basic loops’ times, or the
speed-up of the basic loop over the careful variants, for unexceptional inputs across
all platforms and both progressive and stationary qds.

Variant Min 1st Quartile Median Mean 3rd Quartile Max

All variants 1.088 1.526 1.634 6.417 1.963 52.77
2.2: pivmin 1.356 1.566 1.708 6.660 1.972 49.60
2.3: ∞/∞⇒ 1 1.343 1.544 1.712 5.956 1.917 44.13
2.4: ±∞⇒ ±Ω 1.088 1.493 1.569 6.636 1.960 52.77

Table 3.3: Ratio of the failed basic loop plus the careful loop’s times to the corre-
sponding careful loops’ times, or the slow-down of the attempted basic loop over the
careful variants, for exceptional inputs across all platforms and both progressive and
stationary qds.

qds loop runs faster. The speed-up of the basic qds loop over the corresponding careful
algorithms across all platforms is given in Table 3.2.

Note that the stationary loops sometimes run more slowly than the progressive
loops; some platforms appear to prefer sequential forward memory access over sequen-
tial reverse access. And the x87 unit on the Pentium 4 Xeon prefers Algorithm 2.2
(pivmin) over Algorithm 2.1’s simple qds loop.

Exceptional execution. Figure 3.5 shows the slow-downs from attempting a basic
qds Sturm count, finding an exception, and re-counting with a careful loop. The x87
unit on the Xeon processors shows an excessive slow-down, detailed in Figure 3.6.
This is evidence that the Xeon implements IEEE-754 special values in microcode for
its x87 unit. In other words, every time the Xeon’s x87 unit encounters an ∞ or NaN
value, it flushes its internal pipelines and jumps to a special handler program inside
the processor. In contrast, the Athlon’s x87 unit processes these special values at full
speed.

Assuming exceptions occur rarely in practice, most slow-downs in Figure 3.5 and
Table 3.3 are acceptable. The median is 1.63, less than the factor of two that we
expected. Section 5 details how breaking the loops into shorter blocks can limit
impact of the worst slow-downs.

Choosing a backup qds loop. To help choose one among the careful qds loops to
support the basic loop, Figure 3.7 and Table 3.4 compare times basic loop followed by
the two algorithms with range restrictions, 2.2 and 2.4, to the time of the same loop
followed by the algorithm without range restrictions, 2.3. No algorithm completely
dominates the performance of the others. We suggest that users adopt Algorithm 2.3
because it imposes no range restrictions on the data.

4. Impact on bisection. Does performance of the Sturm count impact eigen-
solvers? We answer this question in part by using Section 2.3’s algorithms in bisection.
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Ratio: time of careful qds / time of basic qds
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Fig. 3.4: As long as no exception occurs, the basic qds loop almost always runs faster
than the careful loops that test for exceptional operations. A point at 1.2 means the
careful loop’s running time was 1.2 times the basic loop’s time; the basic loop sees a
speed-up of 20%.

We apply bisection to the tridiagonal matrices from matrix collections and applica-
tions described in Section 4.1. The bisection routine tested is a modification of the
auxiliary routine dlarrb from LAPACK. We test each version of our Sturm counts
individually by computing the eigenvalues to within a relative error of 4ε. Overall,
the basic qds loop provides a median speed-up of only 1.08. Particular platforms like
the Cray X1 see significant improvements.
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Ratio: time of basic + careful qds / time of careful qds
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Fig. 3.5: When an exception occurs, however, many platforms suffer a penalty for
carrying the NaN through O(n) operations. Here, a point at 1.5 means that the basic
loop followed by the careful loop ran 1.5 times as long as the careful loop alone. The
values for the x87 Xeon runs are clipped.

Variant Min 1st Quartile Median Mean 3rd Quartile Max

2.2: pivmin 0.820 0.945 0.992 1.003 1.009 1.273
2.4: ±∞⇒ ±Ω 0.901 0.995 1.014 1.061 1.048 1.788

Table 3.4: Ratio of the listed careful loops’ times to the corresponding times for variant
B (∞/∞ ⇒ 1) for exceptional inputs across all platforms and both progressive and
stationary qds. To evaluate performance as a “backup” method, the times compared
are those of the basic qds loop followed by the careful loop. We attribute the wide
spread to wide architectural and compiler differences.
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Ratio: time of basic + careful qds / time of careful qds

35 40 45 50

2.4: Subst. huge for Inf

2.3: Subst. 1 for Inf/Inf

2.2: Subst. −pivmin for tiny

P4 Xeon, x87

stationary progressive

Fig. 3.6: The x87 unit on Xeons suffers an extreme penalty for computing with NaNs,
from over 18× to almost 70× slow-down.

4.1. Test Matrices. The symmetric tridiagonal matrices used in our experi-
ments come from a wide range of real applications, as follows:

1. Applications in chemistry. The matrices are related to the modeling of
biphenyl using Moller-Plesset theory, density functional theory applied to determine
the bulk properties of SiOSi6, and the self-consistent Hartree-Fock method for solving
a non-linear Schroedinger problem. The matrices were obtained with the NWChem [13,
12] computational chemistry package and were provided by George Fann.

2. Matrices from the Harwell-Boeing Collection [10, 11]. The matrices are re-
lated to the modeling of power system networks, a finite-difference model for the shal-
low wave equations for the Atlantic and Indian Oceans, a finite element approximation
to the biharmonic operator on a beam and on a plate, and structural engineering finite
element analysis.

3. Matrices from the University of Florida Sparse Matrix Collection [5]. The
matrices are related to finite-element problems.

The matrices from 2 and 3 were tridiagonalized by means of LAPACK’s dsytrd
or a simple Matlab implementation of the Lanczos algorithm, with a starting vector
filled with ones and no reorthogonalization, so as to provoke the appearance of very
close eigenvalues in the resulting tridiagonal. In this case, Lanczos was run for N · k
steps, where N is the the dimension of the problem and k an integer at most 4.
Table 4.1 gives more information about the matrices used in the tests.

14



Ratio: time of alternate / time of (B)
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Fig. 3.7: Comparing Algorithms 2.2 and 2.4, those with input range restrictions, to
Algorithm 2.3 shows no all-around performance winner.

Matrix Application Source # of matrices Dimensions

fann Chemistry NWChem 3 966–2053
bus Power system networks HB 4 494–1138

plat1919 Shallow wave equations HB 1 1919
nos Biharmonic operator HB 2 957–960

bcsstk Structural engineering HB 18 1074–8012
alemdar, nasa, sts Finite-element problems UF 17 1824–6438

Table 4.1: Matrices used in the tests were drawn from NWChem, the Harwell-Boeing
collection (HB), and the University of Florida collection (UF).

4.2. Bisection performance results. Figures 4.1 and 4.2 show the CPU cycles
per entry for each qds algorithm and platform. Because bisection does not run a
fixed number of Sturm counts, calculating the cycles per entry requires replacing the
50 000 in Equation (3.1) with the number of calls to the qds routine in each individual
execution. Section 4.1’s test matrices generated no exceptions. Figure 4.3 provides the
speed-ups for each algorithm and platform, and Table 4.2 summarizes those speed-ups
across all platforms.
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Variant Min 1st Quartile Median Mean 3rd Quartile Max

All variants 0.536 1.029 1.084 1.158 1.322 2.006
2.2: pivmin 0.734 1.024 1.038 1.112 1.350 1.543
2.3: ∞/∞⇒ 1 0.557 1.036 1.077 1.140 1.150 1.984
2.4: ±∞⇒ ±Ω 0.536 1.034 1.119 1.223 1.432 2.006

Table 4.2: Ratio of bisection’s time using careful qds loops to corresponding bisection
time with basic loops, or the bisection speed-up of the basic loop over the careful vari-
ants, for unexceptional inputs across all platforms and both progressive and stationary
qds.

The median improvement of the basic qds loop over the careful algorithms is a
modest 1.08, with a few notable slow-downs using the P4 Xeon’s x87 unit. However,
some platforms see substantial speed-ups. The Itanium 2 and Cray X1 both see speed-
ups of at least 1.2. The Cray X1 benefits the most, achieving a maximum speed-up
of 1.98 and a median speed-up of 1.66.

5. Blocking. For larger matrix sizes, the potential slow-downs shown in Sec-
tion 3.3 become unacceptable. Blocking the loops limits the slow-down for most cases
without surrendering the basic loop’s performance.

The idea is simple: instead of performing the whole computation with the fast
algorithm for the full loop, the computation is split into blocks 1 : n1, n1 +1 : n2, and
so forth. After the computation for the current block has finished, its correctness is
assessed immediately. Thus, in the case of an invalid result, only the computation of
the current block is repeated.

In our context of computing the Sturm count from a differential qds factorization,
blocking results in an outer loop over the blocks, and an inner loop that computes
the Sturm count increment, the number of negative pivots in the factorization of the
current block. The increment is added to the count of the factorization encounters no
exceptions. Otherwise, the increment is re-computed with a careful algorithm.

The block size is a tuning parameter. Its setting has to address the trade-off
between the cost for assessing the correctness of the intermediate solution, in our case
the NaN test, and the potential overhead for redoing the computation. The optimal
block size may depend not only on the computation costs but also on caching effects.

The benchmark test from Section 3 motivates the blocking approach. The basic
stationary differential qds algorithm produces a NaN in step 2 when the shift is chosen
to be d(1). Once that exception is handled, no further exceptions occur. Thus, the
earlier the NaN is detected, the fewer unnecessary operations are performed. At the
end of the first block, the NaN is detected and only the first block’s contribution is
recomputed. The remainder of the blocks will proceed at full speed.

Blocking has no benefits in those very rare cases in which the computation has to
be redone for every block. One such example is an LDLT factorization of a symmetric
diagonally dominant tridiagonal Toeplitz matrix (e.g. the 1-2-1 matrix). We leave it
to the reader to verify that for any shift in the stationary dqds algorithm and for
each block size greater than two, the first pivot d+ in each block is zero. Thus a NaN
occurs in every block.

Conclusion. Evaluating the Sturm count with a qds factorization risks failure
when a tiny or zero pivot causes an overflow, but avoiding those rare failures exacts
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CPU cycles per entry
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Fig. 4.1: CPU cycles per entry for each qds algorithm during bisection. Vertical
dashed lines show the range of documented division latencies, if known.

a cost in performance. Following Demmel and Li [8]’s example, we achieve better
performance by attempting a fast but potentially erroneous qds factorization, testing
for failure afterwards, and recomputing the factorization more carefully only when
necessary. As shown in Section 3.3, that strategy typically yields benchmark speed-
ups over careful factorizations of around 1.12 across many platforms. However, a
remarkable slowdown of up to 66× can occur for the x87 unit on the Pentium 4 Xeon
on exceptional cases. For bisection on the matrices in Section 4.1, we find the speed-
ups vary greatly by platform and algorithm. While the median is a modest 1.08, some
platforms benefit greatly. For example, bisection on the Cray X1 improves by factors
of 1.2 to up to 2.

This paper has focused on the performance benefits of IEEE-754 features in the
context of bisection. However, there are other interesting applications. We mention
two related examples which should find similar benefits.

First, consider the dqds algorithm for computing the singular values of a bidiago-
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Fig. 4.2: CPU cycles per entry for each qds algorithm during bisection for platforms
needing a wider scale than Figure 4.1. Xeon values with the x87 unit are clipped to
fit. Vertical dashed lines show the range of documented division latencies, if known.

nal matrix [14, 15, 22, 27]. There an invalid operation signals that stability has been
lost. The shift to accelerate the convergence has been chosen too aggressively and
needs to be replaced by a more prudent shift.

Second, consider the MRRR algorithm’s method of computing eigenvectors [23,
24, 25, 26, 9]. An invalid operation during the twisted factorization indicates that
an eigenvector entry is tiny or zero. In this case, the fast product formula used to
compute the eigenvector yields an incorrect result and must be replaced by a more
careful formula.

A. Important implementation details. This section describes briefly impor-
tant implementation details for our benchmark of the qds variants.
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Ratio: time of careful qds / time of basic qds
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Fig. 4.3: Similar improvements occur for bisection. A point at 1.2 means that bisec-
tion’s running time using the careful loop is 1.2 times as long as bisection’s time using
the basic loop.

We describe the effort needed to test for NaN to ensure a valid Sturm count from
the unsafe loops in Algorithm 2.1. Only recently have language systems provided
portable tests for NaN. Since we cannot yet rely on those systems’ availability, we
provide our own test described in Section A.1.

Also, Algorithms 2.3 and 2.4 must test for infinite values. Thankfully such tests
can be implemented portably, see Section A.2

Section A.3 discusses possible tests for the sign of a pivot.
And finally, Section A.4 discusses the potential benefits and unfortunate draw-

backs of using system trap handlers to treat exceptions when they occur.
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A.1. Testing for NaNs. While NaN is the only IEEE-754 value for which
X.EQ.X is false, many compilers in higher optimization levels replace this logical
expression by a constant true value. In such circumstances, we have no in-line, reliable
test for the presence of a NaN at run time.

For this reason, our experiments use a function of the form
LOGICAL FUNCTION DISNAN( DIN1, DIN2 )
DOUBLE PRECISION DIN1, DIN2
DISNAN = (DIN1.NE.DIN2)
END FUNCTION

that is compiled separately. Baring interprocedural analysis, the compiler must as-
sume DIN1 and DIN2 are not related. DISNAN(X,X) thus returns true if and only if
X is NaN.

Future languages will provide better support for IEEE-754 facilities. For example,
the Fortran 2003 standard provides a NaN test with the IEEE IS NAN() function in
the IEEE ARITHMETIC module.

There is a tradeoff in when to test for NaN. We could detect a NaN early by inves-
tigating the pivot in every step of the Sturm count, or we could use NaN propagation
and wait and test only the final pivot. Including a test in every iteration penalizes
unexceptional instances, while testing only after the loop requires loading all the data
twice. Between these two extremes lies a range of blocking approaches, see Section 5.

A.2. Testing for ∞. The substitutions in Algorithms 2.3 and 2.4 require a test
for the presence of ∞. This can be done portably by the following code:

OMEGA = DLAMCH(’Overflow’)
ABS(X).GT.OMEGA

Here OMEGA (also Ω in the text) represents the overflow threshold. LAPACK pro-
vides Ω through LAMCH(‘O’). In Fortran 90, the enquiry function HUGE(X) returns
the overflow threshold for the precision of its argument X. And Fortran 2003 provides
IEEE IS FINITE() in the IEEE ARITHMETIC module to test for non-finite IEEE-
754 values directly.

A.3. Testing the sign of a pivot. The straightforward way to count negative
pivots in Fortran is to compare the pivot to zero, as in the following:

IF( PIVOT.LT.ZERO ) NEGCOUNT = NEGCOUNT + 1
The Cray compiler recognizes the sign test inside the inner loop and performs

an interesting optimization to partially vectorize it. The pivots from a portion of
the loop are copied into intermediate vector. Then the entire vector is tested and
converted into mask bits, and those mask bits are counted to provide a NEGCOUNT
increment.

Another possible implementation copies the sign bit of PIVOT to an integer as 0
or 1, then adds that integer to NEGCOUNT. We lack a clear, direct way of expressing
that implementation in Fortran.

A.4. Handling exceptional cases through traps. Algorithms 2.3 and 2.4
both explicitly test for exceptional operations. However, many platforms support
implicit tests through trapping. A trap in this context is an implicit transfer of
control from the exceptional operation to a trap handler. The handler examines the
exceptional operation and its operands then returns a new result for the exceptional
operation.

Trapping allows algorithms to run without explicit branches to test for exceptional
cases; the tests are performed in hardware during floating-point operations. However,
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traps are only an optional feature in IEEE-754 [4]. While being widely implemented,
each operating system and processor combination uses a different programming inter-
face. This makes trap-handling non-portable. Furthermore, invoking a floating-point
trap usually incurs expensive bookkeeping in both the processor and the operating
system.

We experimented with trap handlers on three platforms with reasonable but very
different interfaces: Solaris on an UltraSparc 2i, AIX on a Power3, and Linux on a
Pentium 3. A single exceptional operation on any of these platforms increased the
running time by a factor of at least a thousand.
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[9] I. S. Dhillon, B. N. Parlett, and C. Vömel, LAPACK working note 162: The design and
implementation of the MRRR algorithm, Tech. Report UCBCSD-04-1346, University of
California, Berkeley, 2004.

[10] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users’ guide for the Harwell-Boeing sparse matrix
collection (release I), Tech. Report RAL-TR-92-086, Atlas Centre, Rutherford Appleton
Laboratory, 1992.

[11] , The Rutherford-Boeing sparse matrix collection, Tech. Report RAL-TR-97-031, Atlas
Centre, Rutherford Appleton Laboratory, 1997. Also Technical Report ISSTECH-97-017
from Boeing Information & Support Services and Report TR/PA/97/36 from CERFACS,
Toulouse.

[12] E. Apra et al., NWChem, a computational chemistry package for parallel computers, version
4.7, tech. report, Pacific Northwest National Laboratory, Richland, WA. USA, 2005.

[13] R. A. Kendall et al., High performance computational chemistry: An overview of NWChem
a distributed parallel application, Computer Phys. Comm., 128 (2000), pp. 260–283.

[14] K. Fernando and B. N. Parlett, Accurate singular values and differential qd algorithms,
Numerische Mathematik, 67 (1994), pp. 191–229.

[15] K. V. Fernando and B. N. Parlett, Implicit Cholesky algorithms for singular values and
vectors of triangular matrices, Numerical Linear Algebra with Applications, 2(6) (1995),
pp. 507–531.

21

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/


[16] G. H. Golub and C. van Loan, Matrix Computations, The John Hopkins University Press,
Baltimore, Maryland, 3. ed., 1996.

[17] Intel Corporation, Intel Itanium 2 Processor Reference Manual For Software Development
and Optimization, May 2004. 251110-003.

[18] , IA-32 Intel Architecture Optimization Reference Manual, June 2005. 248966-012.
[19] W. Kahan, Accurate eigenvalues of a symmetric tridiagonal matrix, Computer Science Dept.

Technical Report CS41, Stanford University, Stanford, CA, July 1966 (revised June 1968).
[20] , A demonstration of presubstitution for ∞/∞. unpublished, 2005.
[21] M. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadel-

phia, PA, USA, 2001.
[22] B. N. Parlett, Acta Numerica, Cambridge University Press, 1995, ch. The new qd algorithms,

pp. 459–491.
[23] B. N. Parlett and I. S. Dhillon, Fernando’s solution to Wilkinson’s problem: an application

of double factorization, Linear Algebra and Appl., 267 (1997), pp. 247–279.
[24] , Relatively robust representations of symmetric tridiagonals, Linear Algebra and Appl.,

309 (2000), pp. 121–151.
[25] , Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal

matrices, Linear Algebra and Appl., 387 (2004), pp. 1–28.
[26] , Orthogonal eigenvectors and relative gaps, SIAM J. Matrix Anal. Appl., 25(3) (2004),

pp. 858–899.
[27] B. N. Parlett and O. Marques, An implementation of the dqds algorithm (positive case),

Linear Algebra and Appl., 309 (2000), pp. 217–259.
[28] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys., 5 (1954),

pp. 233–251.
[29] , Vorlesungen über Numerische Mathematik, Birkhäuser, Basel, 1976.
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