PARALLEL BIPARTITE MATCHING FOR
SPARSE MATRIX COMPUTATIONS

1. Goal: Scalable Direct Linear Solver

e Numerical factorization scalable from static pivoting

— Olschowka and Neumaier: Place large elements on
diagonal

— Modity any tiny pivots during factorization
— Demonstrated by distributed SuperLu (Li, Demmel)

e Static pivoting is weighted bipartite matching
— Augmenting path algorithms not parallel
e Can this be made ‘scalable’”

—This is a fast pre-processing step. Heavy lifting not
allowed.

—Scalable is too high a target.
— Distributed, however, is fine.

5. Irregular Problem, Irregular Speed-up
e Results from IBM SP /2 at NERSC (seaborg)

e Amazing (ridiculous?) speed-ups
—& MB caches quickly hold whole matrix

— bearching many paths through optimization space

— Roughly 3 — 7x less speed-up on 128KB cache Pentium
3s, but same curve shapes

e Sequential auction and MC64 (Duff, Koster) speeds are
comparable.

e Using MPI; performance drops when 16-way nodes start
to fill up.

6. So, Scalable?
e Nope, but well distributed

— Does not require whole matrix on any processor
e Speed does not increase linearly with processors...

— Runs out of problem: Small non-zeros per processor

—Trivial matchings eat full communication overhead

e Compared to factorization, time less important

Speed—up using 32 processors (2 nodes)

gematl

2. Matching by Auction Algorithm

e Developed by Bertsekas, et al.

e Reduce to optimization problem:

— Maximize Tr AT X over permutation matrices,

A € RVXN

— Dual: Maximize prices p and profits m such that

pl' +1In<C —¢

— Slackness criteria:

zij(cij — ui — vj) <€

Places a bid, moving the prices and possibly ejecting a
losing column from the matching

Finds solution within Ne of optimum.

— Can start with large € and scale down.

Speed-up v. MC64

Speed-up v. MC64

Speed-up v. MC64

av41092: Finite element matrix

One node ——

Four nodes

Two nodes ——— ||
Three nodes —=— ||

30 40 o0 60

Processors

This speed-up goes beyond cache effects.
The auction resolves very similar bids more
quickly in parallel.

ecl32: Device simulation

One node ——

Four nodes

Two nodes ———— |
Three nodes —=— | |

30 40
Processors

The ecl132 matrix has a trivial maximum
matching. The result is a measure of com-
munication overhead.

lhrllc: Light hydrocarbon recovery

One node ——

Three nodes —=—
Four nodes

Two nodes —— ||

30 40 50 60

Processors

A less ridiculous speed-up from a ‘typical
matrix.

3. Parallel Auctions

e Core loop is simple and completely local

— Examines non-zeros adjacent to a column for the best

deal

e Flach processor runs a local auction to completion.
e Processors merge results, global losers re-matched
e Send only changes, not tull price vectors

e Requires a special reduction-like operation

7. Does Static Pivoting Work?
e Actually factoring A + D, D low-rank and diagonal
o SuperLU: |d;;| < ||A]|l1v/€
— Here, € is the machine precision parameter.
— Plotted varied by 27°...

e Using same value d for threshold and |D| < d
e \Without iterative refinement, results are mediocre.

e Convergence depends on threshold
— Spectrum of (A+ D)™'D
—Don’t yet know if one |d; ;| bound works for all matrices

e Other iterative methods (e.g. GMRES(50)) often work
where iterative refinement fails

Iterative refinement errors: fidapm11l
le+10 ¢
100000 ¢
1
1e-05 |
le-10 |
le-15 |

1e-20 ¢
-20 15 -10 5 0 5

logs of relative diagonal perturbation magnitude

e 2 9 Al e e Small perturbation

WWM—W

Relative backward error —— falls
|Z — z||1/||x|l1: True (forward) error

o A+ D still numer-
ically nearly singu-
lar

Iterative refinement: fidapml11

M_e/e_

-15 -10 -9 0

logo of relative diagonal perturbation magnitude

|dii| < 27| All1v/e

Num. matrix-vector products ——
Num. diagonal bumps ——

/
ﬁ ACTS
COLLECTION

Terascale Optimal PDE Simulations

Jason Rl@dy ejr@cs.berkeley.edu

Dr. James Demmel

UC Berkeley

4. Sequence-Merging Reduction

e Simple max-reduction over price array: large slow-down

e [nstead, merge the few price changes / bids

e Not supported directly by MPI collective communication
— But same communication structure. . .

e Can work in butterfly pattern to reduce latency

— Bids appear in different orders, but have same winners

— Resolve ties by bidder (processor) number
b

B N

Iterative refinement errors: fidap011
le+10 ¢
100000 |
1
1e-05 |
le-10 |
le-15 ¢
1e-20 ¢

W

W

-9 0

logs of relative diagonal perturbation magnitude

dii] < 27| Al v e Large perturbation

Relative backward error

|Z — z||1/]|x|l1: True (forward) error falls

e [too large relative

o - to(A+ D)~1?

Iterative refinement: fidap011

-15 -10 -5 0

logo of relative diagonal perturbation magnitude
dial < 22| All Ve

Num. matrix-vector products ——
Num. diagonal bumps ——

8. Future Work

e [ixperiment with shared memory

— Local load balancing becomes free
—Doesn’t fit OpenMP well, needs sub-team barriers

e Making refinement converge

— Is there a bound that works for all matrices?
— Can we chose an appropriate bound during
factorization?

e Determining convergence of other ‘refinement’ methods

— GMRES(50) seems to always work.
— Always expensive, sometimes extremely so.

— How does performance vary with D bound?
—(Can D be adapted here?

e 11y other pivoting strategies that don’t change non-zero
structure

—owap columns within a supernode?

—oSwap rows or cols within a front’s non-update block?

