Practical Alternatives for Parallel Pivoting

Jason Riedy and James Demmel
UC Berkeley

June 20, 2003
1. Outline

- Direct method scalability
 - Target applications
 - Issues with dynamic pivoting
- Practical pivoting alternatives
 - Coping with dynamic pivoting
 - Static pivoting ideas
- Static pivoting results
 - Matching style
 - Perturbation size
 - Number and location of perturbations
- Structure-limited pivoting
2. **Target Applications**

Direct solution of sparse, unsymmetric linear systems through LU factorization.

- Factor many related matrices
 - inverse problems, fluid flow, optimization, eigenvalues
 - Values change, structure doesn’t

- Factor large matrices
 - 8 million columns (supercomputer-sized)
3. **Issues with Dynamic Pivoting**

Parallel numerical work scales pretty well.
Analysis work is unpredictable.

- **Scalability**: A larger problem requires proportionally more resources for the same speed.
- **Users and computer facilities** want predictability.
- **Parallel analysis work** (new) is discrete and not predictable...

Amortize analysis work over many numerical runs.
4. **Issues with Dynamic Pivoting**

Dynamic pivoting can change the explicit entry structure at every step.

Changing the entry structure also changes:

- Column dependencies
 - Wrecks parallel scheduling.

- Data structures
 - Imposes communication and memory overheads.

- Computation and communication patterns
 - Causes load imbalancing.

Want to *decouple* analysis and numeric work.
5. SuperLU v. MUMPS

- “Perfect” example: 3-D grid with nested dissection
- MUMPS achieves higher MFLOP/s until 128 processors
- SuperLU uses 2-D distribution and static pivoting
6. Practical Pivoting Alternatives

Something needs to control element growth.

- Coping with dynamic pivots:
 - Assume all pivoting is satisfied within the front, delaying unavailable pivots
 - Include all (heuristically) possible pivots in structure
- Avoiding structure-changing pivoting altogether:
 - Static pivoting through matchings
 - Structure-limited pivoting
 - Iterative methods rather than refinement
7. Coping with Dynamic Pivots

Dynamic pivots require dynamic response or over-estimation.

- Do everything dynamically
 - MUMPS: Duff, Amestoy, et al. (CERFACS)
 - Scheduling, load-balancing, etc. must be dynamic.
 - Assume pivots are local, delay those that fail

- Consider all possible pivots
 - WSMP: Gupta (IBM)
 - Data dependencies include all (heuristically) reasonable pivots
 - Frontal matrices constructed dynamically
8. **Static Pivoting**

Few entries should interact during sparse factorization, so large elements shouldn’t change much.

- Pre-pivot with a matching [Olshowka, Neumaier] [Duff, Koster]
- Matrix A gives bipartite graph $G(A) = \{R, C; E\}$
- Find a maximum weight matching on $G(A)$
 - Matching corresponds to a permutation M
 - Also provides a particular row scaling S_r and column scaling S_c

\[
\begin{bmatrix}
a_{11} & a_{12} & 0 \\
a_{12} & 0 & a_{23} \\
0 & a_{32} & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

- Factor $LU = P_c^T M^T S_r A S_c P_c = P_c^T M^T A_s P_c$
- No dynamic structural changes.
9. **Static Pivoting with Perturbations**

Tiny pivots still occur from cancellation. But this kind of cancellation implies round-off...

- Perturb small diagonal entries [Li and Demmel]
 - Similar ideas for symmetric indefinite [Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]
- Tiny pivots encourage drastic element growth.
- Drastic element growth leads to unintended cancellation.
- Change tiny pivots to some larger number.

\[
P_c^T M^T A_s P_c = \begin{bmatrix} L_{11} & 0 & 0 \\ \lambda_{21} & 1 & 0 \\ L_{31} & 0 & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ 0 & \pi_{22} & s_{23} \\ 0 & s_{32} & S_{33} \end{bmatrix} \begin{bmatrix} U_{11} & \nu_{12} & U_{13} \\ 0 & 1 & 0 \\ 0 & 0 & I \end{bmatrix}
\]
10. **Static Pivoting with Perturbations**

Tiny pivots still occur from cancellation. But this kind of cancellation implies round-off…

- Perturb small diagonal entries [Li and Demmel]
 - Similar ideas for symmetric indefinite [Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]
- Tiny pivots encourage drastic element growth.
- Drastic element growth leads to unintended cancellation.
- Change tiny pivots to some larger number.

\[
\begin{pmatrix}
L_{11} & 0 & 0 \\
\lambda_{21} & 1 & 0 \\
L_{31} & 0 & I
\end{pmatrix}
\begin{pmatrix}
I & 0 & 0 \\
0 & \pi_{22} & s_{23} \\
0 & s_{32} & S_{33}
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
U_{11} & \nu_{12} & U_{13} \\
0 & 1 & 0 \\
0 & 0 & I
\end{pmatrix}
\]
11. **Static Pivoting with Perturbations**

Tiny pivots still occur from cancellation. But this kind of cancellation implies round-off...

- Perturb small diagonal entries [Li and Demmel]
 - Similar ideas for symmetric indefinite [Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]
- Tiny pivots encourage drastic element growth.
- Drastic element growth leads to unintended cancellation.
- Change tiny pivots to some larger number.

\[
\begin{pmatrix}
L_{11} & 0 & 0 \\
\lambda_{21} & 1 & 0 \\
L_{31} & 0 & I
\end{pmatrix}
\begin{pmatrix}
I & 0 & 0 \\
0 & \pi_{22} & s_{23} \\
0 & s_{32} & S_{33}
\end{pmatrix}
\begin{pmatrix}
U_{11} & \nu_{12} & U_{13} \\
0 & 1 & 0 \\
0 & 0 & I
\end{pmatrix}
+ \begin{pmatrix}
0 & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
12. **Static Pivoting with Perturbations**

Tiny pivots still occur from cancellation. But this kind of cancellation implies round-off...

- Perturb small diagonal entries [Li and Demmel]
 - Similar ideas for symmetric indefinite [Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]
- Tiny pivots encourage drastic element growth.
- Drastic element growth leads to unintended cancellation.
- Change tiny pivots to some larger number.

\[
P_c^T M^T A_s P_c = LU + D
\]

- \(D\) is diagonal with only a few small diagonal entries.
13. **Static Pivoting Parameters**

One downside: There are many more parameters and tuning choices.

- **What scaling to use?**
 - Matching-based, or typical equilibration

- **What type of matching? What are the weights of $G(A)$?**
 - Pure structural or value-based

- **How large a perturbation?**
 - SuperLU: $\sqrt{\varepsilon} ||A_s||_1$
 - $||A_s||_1$: “weight” of column
 - $\sqrt{\varepsilon}$: half-precision perturbation

- **How do we improve the solution?**
 - Iterative refinement or an iterative method (GMRES)

Determine through experiments

(MatrixMarket and UF collections)
14. Scaling

Cheap is good.

- Computing Olshowka and Neumaier’s scaling is expensive.
- Has no effect beyond (very cheap) equilibration.
- True for both static and dynamic pivoting.

<table>
<thead>
<tr>
<th></th>
<th>No Equilibration</th>
<th>Equilibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>No O&N scaling</td>
<td>no improvement</td>
<td>fixes scaling</td>
</tr>
<tr>
<td>O&N scaling</td>
<td>fixes scaling</td>
<td>no incremental improvement</td>
</tr>
</tbody>
</table>
15. Pattern-based Matching

We can’t get away from using the values.

Pattern-based:

- Maximum cardinality matching
 - All edges have weight one.
 - Quickly encounter element blow-up.
 - Solves fail. Factors are far off the mark.

- Minimize the Markowitz cost
 - Edge weight $= n^2 - (r - 1)(c - 1)$, the worst case fill from the given pattern.
 - Most solves still fail. Same problems.
16. Value-based Matching

We can’t get away from using the values.

Value-based:

- Maximize the least entry
 - Relatively expensive; sequence of matchings
 - Works sometimes.
- Maximize the diagonal’s sum
 - Edge \((i, j)\) has weight \(|a_{ij}|\)
- Maximize the diagonal’s product
 - Edge \((i, j)\) has weight \(\log |a_{ij}|\)

The latter matchings with refinement fail to converge for few matrices (5-8 / 50). Maximizing the product requires fewer perturbations, and using integer exponents is equivalent.
17. **Perturbation Size**

Size matters. Smaller is better.

Iterative refinement errors: fidap011 and fidapm11

\[r\text{condest}(\text{fidapm11}) \approx 10^{-5}, \quad r\text{condest}(\text{fidap011}) \approx 10^{-12} \]
18. Number of Perturbations

The number matters, sometimes.

Iterative refinement: fidap011 and fidapm11

Number of supernodes with pivots grows about half as quickly.
The failing case changed *many* pivots by a tiny amount.

Pick thresholds around a critical point. \(\text{rcondest}(\text{fidap011}) \approx 10^{-12} \)
Factored approx. 100 levels before reaching perturbations.
20. Other Matrices

- **fidapm11**
 - Matching performed “poorly”.
 - Two large entries forced many tiny ones onto the diagonal.

- **Hopeless cases**
 - Really large condition numbers (lhr71c) fail.

- **Complex: works?**
 - Don’t have many examples.
 - Use magnitude for matching.
21. **Static Pivoting’s Drawbacks**

Is this still a direct method?

- When iterative refinement fails, use a general iterative method.
 - *LU* factors of a low-rank perturbation, so GMRES
 - Refinement depends on \((A + D)^{-1}D\)…
 - Pivot changes of order \(r\text{cond}\)…

- Lose backwards stability?

- Lose predictability?

- Promising direction: Merge iterative and direct methods.
 - Can we control the perturbations enough to prove things about the combination in *floating-point* arithmetic?
22. **Structure-Limited Pivoting**

Can we exploit block structure for pivoting?

- Perturbations in \(<30\%\) of a supernode’s columns.

\[
P_c^T M^T A P_c Q = LU = L(U_d + U_u Q)
\]

- Don’t need to modify \(U_u\) storage or indexing.
23. Structure-Limited Pivoting

Can we exploit block structure for pivoting?

- Row supernodes or frontal matrices can use limited row pivoting.

 \[Q_r P_c^T M^T A P_c = LU = (Q_r L_l + L_d) U \]

- Could even use limited complete pivoting, etc.
24. **Observations**

- Static pivoting is practical and promising.
 - Separates numerical and analysis work.
 - Can calculate static pivots in parallel.
 - Needs work to keep all the benefits of a *direct* method.

- Structure-limited pivoting is also promising.
 - Takes more communication.
 - Should preserve directness.