Two kinds of errors out there...

- Graphs **imperfectly** represent some real phenomenon.
 - Friendship: see LinkedIn
 - Health data: see privacy
- Computation **imperfectly** analyzes the graph.
 - Data may be “sampled” (aka dropped, lost) for energy...
 - Plain old computational error, bugs

Challenge: Quantify and Analyze Errors in Graphs

- Something that happens once in a billion times will pop up in large graphs...
- Except in limited cases, we don’t know what we’re doing.
Quick Example: Global Clustering Coefficient

From Zakrzewska & Bader, “Measuring the Sensitivity of Graph Metrics to Missing Data,” PPAM 2013

RandEdge - Global Clustering Coefficient

RandVertex - Global Clustering Coefficient

LowDegVertex - Global Clustering Coefficient

HighDegVertex - Global Clustering Coefficient

Fraction of graph used (kinda)
Quick Example: Local Clustering Coefficients

From Zakrzewska & Bader, “Measuring the Sensitivity of Graph Metrics to Missing Data,” PPAM 2013

Fraction of graph used (kinda)
Quick Example: Streaming Magnifies Errors

Updating PageRank via simple linear algebra:

\[
P \Delta \Delta x = \left(A \Delta \Delta^T D \Delta^{-1} - A^T D^{-1} \right) x + r
\]

Ranking looks just fine! Until everything falls apart...

Paying attention to the initial error works.
Challenge: Build Error & Sensitivity Analysis for Graphs

Possible starting points

How do you measure or model error in...

- connected components?
 - Is the graph a window into the “real” network?
 - Can you leverage link prediction between components?
 - Measure precision and recall against... what?
- linear-algebra-ish metrics like PageRank?
 - Is this easier?
 - Mapping backward error analysis to a discrete matrix...

What is success?

Building mental and formal methods for addressing error and sensitivity that can be condensed to *rules of thumb*.