STINGER: Multi-threaded Graph Streaming

Jason Riedy and David Bader

Georgia Institute of Technology
Data analysis runs throughout.
Many problems can be phrased through graphs.
Any many are changing and dynamic.
Outline

Motivation: Graph Algorithms for Analysis

Graphs and Streaming Data

STING/STINGER Analysis Framework

Building Blocks for Streaming Graph Data
 - PageRank
 - Triangle Counting
 - Agglomerative Communities

Observations
General approaches

- **High-performance static graph analysis**
 - Develop techniques that apply to unchanging massive graphs.
 - Provides useful after-the-fact information, starting points.
 - Serves many existing applications well: market research, much bioinformatics, ...
 - Needs to be $O(|E|)$.

- **High-performance streaming graph analysis**
 - Focus on the dynamic changes within massive graphs.
 - Find trends or new information as they appear.
 - Serves upcoming applications: fault or threat detection, trend analysis, online prediction...
 - Can be $O(|\Delta E|)$? $O(\text{Vol}(\Delta V))$? Less data \Rightarrow faster, efficient
Streaming graph data

Data Rates

From www.statisticsbrain.com:

- 58M posts per day on Twitter (671 / sec)
- 1M links shared per 20 minutes on Facebook

Other applications (e.g. network security) need to respond nearly at line rate, 81k-1.5M pps on gigabit ethernet.

Opportunities

- Do not need to analyze the entire graph.
- Different domains: Throughput & latency
 - Expose different levels of concurrency
- Can achieve ridiculous “speed ups.”
Streaming Queries

Different kinds of questions

- How are individual graph metrics (e.g. clustering coefficients) changing?
- What are the patterns in the changes?
 - Are there seasonal variations?
 - What are responses to events?
- What are *temporal anomalies* in the graph?
 - Do key members in clusters / communities change?
 - Are there indicators of event responses before they are obvious?
On to STING…

Motivation: Graph Algorithms for Analysis

Graphs and Streaming Data

STING/STINGER Analysis Framework

Building Blocks for Streaming Graph Data

Observations
STING’s focus

▶ STING: Spatio-Temporal Interaction Networks and Graphs
▶ STING manages queries against changing graph data.
 ▶ Visualization and control often are application specific.
▶ Ideal: Maintain many persistent graph analysis kernels.
 ▶ One current graph snapshot, kernels keep smaller histories.
 ▶ Also (a harder goal), coordinate the kernels’ cooperation.
STING: High-level architecture

Key:
- Stream Process
- Algorithm Process
- Monitor Process
- Shared Memory

Protocol Buffer via TCP ➔ Shared Memory Reads

Data flows from left to right. All stages aligned vertically execute on the data in parallel. All processes in direct contact with shared memory have write access to that memory. Execution is synchronized by the server. Streams, algorithms, and monitors can join or leave the workflow at any time.

Slide credit: Rob McColl and David Ediger

- OpenMP + sufficiently POSIX-ish
- Multiple processes for resilience
STING Extensible Representation: Core data structure

![Diagram of STING data structure]

Initial considerations [Bader, et al.]

- Be useful for the entire “large graph” community
- Permit good performance: No single structure is optimal for all.
- Assume globally addressable memory access and atomic operations
- Not a *graph database*, but supports types, subsets
- Large graph ⇒ rare conflicts
Building Blocks for Streaming Graph Data

Motivation: Graph Algorithms for Analysis

Graphs and Streaming Data

STING/STINGER Analysis Framework

Building Blocks for Streaming Graph Data
 - PageRank
 - Triangle Counting
 - Agglomerative Communities

Observations
Incremental PageRank

- PageRank: Well-understood method for ranking vertices based on random walks (related to minimizing conductance).
- Equivalent problem, solve \((I - \alpha A^T D^{-1})x = (1 - \alpha)v\) given initial weights \(v\).
- Goal: Use for seed set expansion, sparse \(v\).
- State-of-the-art for updating \(x\) when the graph represented by \(A\) changes? Re-start iteration with the previous \(x\).
- Can do significantly better for low-latency needs.
- Compute the change \(\Delta x\) instead of the entire new \(x\).
Incremental PageRank: Iteration

Iterative solver

Step $k \rightarrow k + 1$:

$$\Delta x^{(k+1)} = \alpha (A + \Delta A)^T (D + \Delta D)^{-1} \Delta x^{(k)} +$$

$$\alpha [(A + \Delta A)^T (D + \Delta D)^{-1} - A^T D^{-1}] x$$

- Additive part: Non-zero only at changes.
- Operator: Pushes changes outward.
Incremental PageRank: Limiting Expansion

Iterative solver

Step $k \rightarrow k + 1$:

$$
\Delta \hat{x}^{(k+1)} = \alpha (A + \Delta A)^T (D + \Delta D)^{-1} \Delta \hat{x}^{(k)}_{\text{ex}} + \alpha \Delta \hat{x}_{\text{held}}
$$

$$
\alpha [(A + \Delta A)^T (D + \Delta D)^{-1} - A^T D^{-1}] \hat{x}
$$

- Additive part: Non-zero only at changes.
- Operator: Pushes sufficiently large changes outward.
Incremental PageRank: Test Cases

- Initial, high-level implementation via sparse matrices in Julia.
- Test graphs from the 10th DIMACS Implementation Challenge.
- Add uniformly random edges… worst case.
- Up to 100k in different batch sizes.
- One sequence of edge actions per graph shared across experiments.
- Conv. & hold base threshold: 10^{-12}

| Graph | $|V|$ | $|E|$ | Avg. Deg. | Size (MiB) |
|------------------------|--------|--------------|-----------|------------|
| caidaRouterLevel | 192,244| 609,066 | 3.17 | 5.38 |
| coPapersCiteseer | 434,102| 1,603,672 | 36.94 | 124.01 |
| coPapersDBLP | 540,486| 1,524,572 | 28.21 | 118.38 |
| great-britain.osm | 7,733,822| 8,156,517 | 1.05 | 91.73 |
| PGPgiantcompo power | 10,680 | 24,316 | 2.28 | 0.23 |
| power | 4,941 | 6,594 | 1.33 | 0.07 |
Incremental PageRank: Throughput v. latency

Percent of edge traversals relative to re-started iteration:
Triangle Counting

Current version

- Count all the triangles around each graph vertex.
- Used in clustering coefficients (numerator), etc.
 - Up to 130 000 graph updates per second on X5570 (Nehalem-EP, 2.93GHz)
 - 2000× speed-up over static recomputation
- Main algorithm, for each vertex v:
 - Sort its adjacency list.
 - For each neighbor w,
 - search for w’s neighbors in the sorted list.
- *Could* compute $\text{diag}(A^3)$, more or less...
Triangle Counting: Small Batches

Low-latency case

- In general, $\text{diag}(A^3)$ is a silly option.
- But $A^3 \Delta x$, a BFS, to count around a few vertices...
- Brute force (MTAAP10)
 - Roughly $4 \times$ slower with moderate batches, and
 - less than $2 \times$ slower with small batches.
- Could be reasonable for a quick hack.

Small changes (low latency) may find more applications of linear algebra-like primitives.
Community Detection

What do we mean?

- **Partition** a graph’s vertices into disjoint communities.
- Locally optimize some metric, e.g. modularity, conductance
- Try to capture that vertices are more similar within one community than between communities.
- **Modularity**: More internal edges than expected.

Jason’s network via LinkedIn Labs
Parallel Agglomerative Method

- Use a matching to avoid a serializing queue.
 - Simple greedy algorithm.
 - *Would require smuggling data and communication in through element operators...*
- Highly scalable, $5.8 \times 10^6 - 7 \times 10^6$ edges/sec, $8 \times - 16 \times$ speed-up on 80-thread E7-8870 (thanks Intel!)
- Extends to dynamic community maintenance
 - Extract vertices from communities, re-agglomerate
 - *Matrix triple product-ish*
Parallel Agglomerative Method

- Use a **matching** to avoid a serializing queue.
 - Simple greedy algorithm.
 - *Would require smuggling data and communication in through element operators...*
- Highly scalable, $5.8 \times 10^6 - 7 \times 10^6$ edges/sec, $8 \times - 16 \times$ speed-up on 80-thread E7-8870 (thanks Intel!)
- Extends to dynamic community maintenance
 - Extract vertices from communities, re-agglomerate
 - *Matrix triple product-ish*
Use a matching to avoid a serializing queue.
 ▶ Simple greedy algorithm.
 ▶ *Would require smuggling data and communication in through element operators...*

Highly scalable, $5.8 \times 10^6 - 7 \times 10^6$ edges/sec, $8 \times - 16 \times$ speed-up on 80-thread E7-8870 (thanks Intel!)

Extends to dynamic community maintenance
 ▶ Extract vertices from communities, re-agglomerate
 ▶ *Matrix triple product-ish*
Seed Set Expansion

Problem

- Given a small number of vertices, and
- find a region of interest around them.

- Start with a subset consisting of the selection.
- Evaluate the change in *modularity* around the current subset.
- Absorb all vertices that...
 - may increase modularity by a significant amount, or
 - are within the top 10% of changes, or...
- Repeat until the set is large enough.
- *Step-wise guided expansion doesn’t fit current primitives.*
Observations

- Throughput / latency trade offs:
 - Different levels of parallelism and optimizations
 - Larger batches ⇒ higher throughput, more collisions
 - Small batches ⇒ lower latency, more scattered
 - Impact optimizations similarly to direction-optimized BFS

- Can build proposed building blocks against STINGER

- Many algorithms are not naturally expressed:
 - Matching
 - Guided set expansion by changing criteria
 - Streaming versions of these...

- Targets for version 2?
STINGER: Where do you get it?

www.cc.gatech.edu/stinger/

Gateway to

- code,
- development,
- documentation,
- presentations...
- (working on usage and development screencasts)

Remember: Still academic code, but maturing.

Users / contributors / questioners:
Georgia Tech, PNNL, CMU, Berkeley, Intel, Cray, NVIDIA, IBM, Federal Government, Ionic Security, Citi
Acknowledgment of support