Parallel Combinatorial Computing and Sparse Matrices

E. Jason Riedy James Demmel

Computer Science Division
EECS Department
University of California, Berkeley

SIAM Conference on Computational Science and Engineering, 2005
Fundamental question: What performance metrics are right?

Background

Algorithms
 - Sparse Transpose
 - Weighted Bipartite Matching

Setting Performance Goals

Ordering Ideas
App: Sparse LU Factorization

Characteristics:

- Large quantities of numerical work.
- Eats memory and flops.
- Benefits from parallel work.
- And needs combinatorial support.
App: Sparse LU Factorization

Characteristics:
- Large quantities of numerical work.
- Eats memory and flops.
- Benefits from parallel work.
- And needs combinatorial support.
App: Sparse LU Factorization

Combinatorial support:

- Fill-reducing orderings, pivot avoidance, data structures.
- Numerical work is distributed.
- Supporting algorithms need to be distributed.
- Memory may be cheap (100 GB), moving data is costly.
Sparse Transpose

Data structure manipulation

- Dense transpose moves numbers, sparse moves numbers and re-indexes them.
- Sequentially space-efficient “algorithms” exist, but disagree with most processors.
 - Chains of data-dependent loads
 - Unpredictable memory patterns

If the data is already distributed, an unoptimized parallel transpose is better than an optimized sequential one!
Parallel Sparse Transpose

Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.
- Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Communicates most of matrix twice. Node stores whole matrix.

Note: We should compare with this implementation, not purely sequential.
Parallel Sparse Transpose

Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.
- Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

All-to-all communication. Some parallel work.
Parallel Sparse Transpose

Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.
- Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Serial communication, but may hide latencies.
Parallel Sparse Transpose

Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.
- Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Useful in some circumstances.
What Data Is Interesting?

- Time

- How much data is communicated.
- Overhead and latency.
- Quantity of data resident on a processor.
What Data Is Interesting?

- Time (to solution)
- How much data is communicated.
- Overhead and latency.
- Quantity of data resident on a processor.
All-to-all is slower than pure sequential code, but distributed.

Actual speed-up when the data is already distributed.

Hard to keep constant size / node when performance varies by problem.

Data from CITRIS cluster, Itanium2s with Myrinet.
Weighted Bipartite Matching

- Not moving data around but finding where it should go.
- Find the “best” edges in a bipartite graph.
- Corresponds to picking the “best” diagonal.
- Used for static pivoting in factorization.
- Also in travelling salesman problems, etc.
Weighted Bipartite Matching

▶ Not moving data around but finding where it should go.
▶ Find the “best” edges in a bipartite graph.
▶ Corresponds to picking the “best” diagonal.
▶ Used for static pivoting in factorization.
▶ Also in travelling salesman problems, etc.
Algorithms

Depth-first search

- Reliable performance, code available (MC64)
- Requires A and A^T.
- Difficult to compute on distributed data.

Interior point

- Performance varies wildly; many tuning parameters.
- Full generality: Solve larger sparse system.
- Auction algorithms replace solve with iterative bidding.
- Easy to distribute.
Parallel Auction Performance

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>●●</td>
</tr>
<tr>
<td>10</td>
<td>●</td>
</tr>
<tr>
<td>15</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>●●</td>
</tr>
<tr>
<td>4</td>
<td>●</td>
</tr>
<tr>
<td>6</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>●●</td>
</tr>
</tbody>
</table>

Compare with running an auction on the root, a parallel auction achieves slight speed-up.
Proposed Performance Goals

When is a distributed combinatorial algorithm (or code) successful?

- Does not redistribute the data excessively.
- Keeps the data distributed.
- No process sees more than the whole.
- Performance is competitive with the on-root option.

Pure speed-up is a great goal, but not always reasonable.
Distributed Matrix Ordering

Finding a permutation of columns and rows to reduce fill.

NP-hard to solve, difficult to approximate.
Sequential Orderings

Bottom-up

- Pick columns (and possibly rows) in sequence.
- Heuristic choices:
 - Minimum degree, deficiency, approximations
 - Maintain symbolic factorization

Top-down

- Separate the matrix into multiple sections.
 - Graph partitioning: $A + A^T$, $A^T \cdot A$, A
 - Needs vertex separators: Difficult.

Top-down Hybrid

- Dissect until small, then order.
Parallel Bottom-up Hybrid Order

1. Separate the graph into chunks.
 - Needs an edge separator,
 - and knowledge of the pivot.
2. Order each chunk separately.
 - Forms local partial orders.
3. Merge the orders.
 - What needs communicated?
Merging Partial Orders

Respecting partial orders

- Local, symbolic factorization done once.
- Only need to communicate quotient graph.
 - Quotient graph: Implicit edges for Schur complements.
- No node will communicate more than the whole matrix.
Preliminary Quality Results

Merging heuristic

- Pairwise merge.
- Pick the head pivot with least worst-case fill (Markowitz cost).

Small (tiny) matrices: performance not reliable.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Method</th>
<th>NNZ increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>west2021</td>
<td>AMD ((A + A^T))</td>
<td>1.51×</td>
</tr>
<tr>
<td></td>
<td>merging</td>
<td>1.68×</td>
</tr>
<tr>
<td>orani678</td>
<td>AMD</td>
<td>2.37×</td>
</tr>
<tr>
<td></td>
<td>merging</td>
<td>6.11×</td>
</tr>
</tbody>
</table>

Increasing the numerical work drastically spends any savings from computing a distributed order. Need better heuristics?
Summary

- Meeting classical expectations of scaling is difficult.
 - Relatively small amounts of computation for much communication.
 - Problem-dependent performance makes equi-size scaling hard.
- But consolidation costs when data is already distributed.

 In a supporting role, don’t sweat the speed-up. Keep the problem distributed.

Open topics

- Any new ideas for parallel ordering?